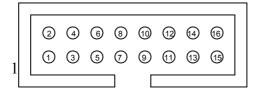


OEC OZONE ANALYZER SBP-527


L'analizzatore SBP-527 è un misuratore di ozono in ossigeno di dimensioni compatte adatto ad essere utilizzato come sottosistema in generatori di ozono o apparecchiature dove è indispensabile tenere sotto controllo la concentrazione di O₃.

L'alimentazione in bassa tensione e il suo contenuto assorbimento rendono l'analizzatore di ozono SBP-527 versatile anche nelle strumentazioni portatili.

Il principio fotometrico su cui si basa lo rendono affidabile e preciso, mentre la sorgente luminosa, della durata di 50.000 ore assicura una lunga vita operativa.

CARATTERISTICHE PRINCIPALI		
Tensione di alimentazione	1215 Vcc	Ripple max 10mV
Assorbimento	70mA	
Gas misurato	ozono in ossigeno	
Segnale di uscita	05V	
Range di misura	0128 g/m³	
Risoluzione max	0.2 g/m³	
Uscite	open-collector	250 mA max
Errore	max 3% fondoscala	
Tempo di risposta	200 ms al 90%	
Flusso max	5 L/min	
Pressione di esercizio	0-1 bar	
Pressione di prova	3 bar	
Temperatura di utilizzo	1035°C	
Temperatura di stoccaggio	-550°C	
Peso	750 g	
Attacchi pneumatici	1/8" F	
Connessioni	Spina 16 poli	

PIN OUT

L'analizzatore dispone di un connettore a 16 poli. Si consiglia di utilizzare, per il collegamento al dispositivo, una presa a 16 poli IDC con polarizzazione a norma DIN 41651.

Pin number	Tipo di connessione	Descrizione
1		GND
2	OUTPUT	USCITA DIGITALE 2
3	OUTPUT	USCITA 05V
4	OUTPUT	USCITA DIGITALE 3
5		GND
6	OUTPUT	USCITA DIGITALE 4
7	SUPPLY VOLTAGE	+ Vcc
8	OUTPUT	USCITA DIGITALE 5
9	SUPPLY VOLTAGE	+ Vcc
10		RISERVATO
11	INPUT	COMANDO AUTOZERO
12		RISERVATO
13		RISERVATO
14		GND
15	OUTPUT	USCITA DIGITALE 1
16	OUTPUT VOLTAGE	+5V

DESCRIZIONE DELLE CONNESSIONI

Vcc pin 7 e 9

Sono le connessioni di alimentazione da collegare ad un alimentatore con una tensione di uscita compresa tra i 12 e i 15 Volt stabilizzati.

OUT pin 3

E' l'uscita dell'analizzatore e presenta una tensione direttamente proporzionale alla concentrazione misurata con un andamento lineare:

0V → concentrazione 0 g/m³

5V → concentrazione 128 g/m³

Rel. 1.3-02 Page 2

COMANDO AUTOZERO pin 11

Questo pin deve essere collegato a 5V tramite una resistenza di pull-up e quando viene collegato a massa il valore misurato in quel momento viene assunto come 0, cioè passaggio di ossigeno puro senza la presenza di ozono.

USCITA DIGITALE 1- WARM-UP

pin 15

Questa uscita open-collector resta alta durante il ciclo iniziale di warm-up, alla fine del quale si porta bassa.

USCITA DIGITALE 2 - ALLARME LETTURA NON VALIDA

pin 2

Questa uscita open-collector è normalmente alta e va bassa in condizioni di lettura non valida nei seguenti casi:

- finito il ciclo di warm-up non viene effettuato l'azzeramento entro 10 secondi
- si è raggiunto il fondo scala dello strumento
- la temperatura è variata di 3 °C rispetto all'ultimo autozero

Dopo un allarme di lettura non valida, per ripristinare il normale funzionamento del sistema, si dovrà effettuare un nuovo ciclo di autozero.

USCITA DIGITALE 3 - ALLARME PARAMETRI SORGENTE LUMINOSA

pin 4

Questa uscita open-collector è normalmente alta e va bassa se i parametri della sorgente luminosa escono dai limiti di funzionamento.

USCITA DIGITALE 4 – CELLA SPORCA

pin 6

Questa uscita open-collector è normalmente alta e va bassa se il test della trasmissione luminosa non rientra nei parametri stabiliti.

USCITA DIGITALE 5 – CONTROLLO AUTOZERO

8 nig

Questa uscita open-collector è normalmente alta e va bassa nella fase di autozero, da quando il pin 11 viene collegato a massa fino all'accettazione del valore di 0.

USCITA 5V pin 16

Su questo piedino è disponibile una tensione di servizio di 5V per l'alimentazione di componenti ausiliari (max 100 mA).

FUNZIONAMENTO E TEMPORIZZAZIONI

Collegare l'analizzatore all'alimentazione elettrica ed al generatore di ozono, che dovrà anche provvedere ad erogare, per attuare la fase di autozero, solamente ossigeno.

Rel. 1.3-02 Page 3

Inizierà il ciclo di warm-up che ha una durata di 3 minuti, durante la quale tutte le uscite di allarme rimangono alte e l'uscita OUT rimane a 0 V; al termine del ciclo di warm-up, l'uscita digitale 1 andrà bassa.

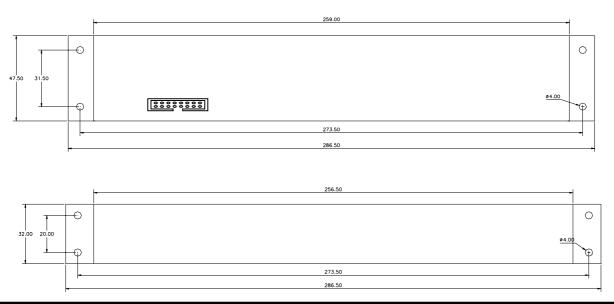
A questo punto il sistema attende che il pin 11 del connettore IN COMANDO AUTOZERO venga chiuso a massa per settare lo zero; Se questo non avviene entro 10 secondi dalla fine di warm-up l'USCITA DIGITALE 2 va bassa e l'uscita in tensione OUT assume alternativamente valori di 0 e 5V.

Quando il pin 11 del connettore IN AUTOZERO viene chiuso a massa, il fotometro assume il valore in quel momento misurato come assenza di ozono; è indispensabile quindi che in quel momento nella cella di misurazione sia presente solamente ossigeno.

La durata della fase di autozero può variare da circa 1 sec fino a qualche secondo e se non si utilizza il pin 8 CONTROLLO AUTOZERO che conferma l'avvenuto settaggio dello 0 è indispensabile che nella cella di misurazione passi ossigeno per almeno 10 sec.

Terminato l'autozero il sistema comincia a misurare l'ozono presente e imposta l'uscita OUT ad una tensione direttamente proporzionale alla concentrazione.

Il sistema in automatico esegue le seguenti procedure:


- test di pulizia della cella di misurazione
- controllo della temperatura al momento dell'autozero: in caso vi sia una variazione di +/- 3°C da' un allarme di lettura non valida richiedendo un nuovo ciclo di autozero.
- controllo dei parametri della sorgente luminosa

AVVERTENZE

- Il gas immesso nel fotometro non deve contenere impurità o umidità che potrebbero alterare la misura e danneggiare lo strumento stesso.
- L'analizzatore SBP-527 ha una deviazione dello zero molto contenuta, ma si ricorda che per questo tipo di strumento la procedura standard IOA 002/87 raccomanda di effettuare l'esecuzione dell'autozero almeno ogni 30/60 minuti.
- -Si consiglia di utilizzare, per l'attacco pneumatico, dei raccordi che non facciano entrare luce nel fotometro e che usino per la tenuta una guarnizione (compatibile con l'ozono).

INGOMBRI E FISSAGGI

Il fotometro deve essere fissato su una superficie piana e si possono utilizzare indifferentemente le alette della faccia più stretta o di quella più larga con i relativi fori. L'involucro deve essere collegato a massa di protezione.

Rel. 1.3-02 Page 4